initial key meaning in Chinese
初始键
Examples
- At the precision of 64 bits , even if a variable in the initial key has a minute difference about 10 - 15 , any information about the original plaintext ca n ' t be obtained
在64位的精度下,即使初始密钥中的一个变量有10 - 15的微小差异,密码分析者也根本无法得到原始明文的任何有关信息。 - Under the condition of the precision of p bits and regardless of the absolute value less than , the space of initial key is about , the entropy of system is about ( 5p + 20 ) / 6 , which comes up to the demand of the security at the sense of modern cryptology
同时,初始密钥也具有很高的强度,采用p位精度且不考虑绝对值小于的值时,初始密钥空间的大小k约为,系统的熵h ( k )约为( 5p + 20 ) / 6 ,完全符合现代密码学意义下的安全性要求。 - The security of the algorithm is analyzed from the randomness , linear complexity of the chaotic sequence and the intensity of initial key . the results show the randomness of the key sequence pass the frequency test , sequential test , poker test , autocorrelation test , runs test , etc . and the total level is better than the binary sequence generated by the prng of delphi 7 . 0 , logistic chaotic system and rc4 , the linear complexity comes up to the expectation , the initial key has very strong intensity
本文最后从混沌序列的随机性、线性复杂度和初始密钥的强度三个方面对算法进行了安全性分析,结果表明算法产生的密钥序列的随机性完全通过了频数检验、序列检验、扑克检验、自相关检验和游程检验等5种统计检验方法的检验,而且整体水平要好于delphi7 . 0中的伪随机数发生器、 logistic混沌系统和rc4三种方法产生的二进制序列,线性复杂度达到了数学期望值。 - Since the security of stream cipher depends on the randomness of key sequence and the intensity of the initial key , first we analyze sensitiveness of lorenz chaotic system to initial conditions and parameters , and non - periodicity and pseudo - randomness of the chaotic sequence generated by lorenz chaotic system . the optimum domain of initial values and parameters is obtained
由于序列密码算法的安全性依赖于密钥序列的随机性和初始密钥的强度,我们首先从动力系统的运动性态着手,分析了lorenz混沌系统对初始条件和参数的敏感性以及由其生成的混沌序列的非周期性和类随机性,得出初值和参数的最佳取值范围。